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Non-linear liquid crystal waveguides 

by H. LIN and P. PALFFY-MUHORAY* 
Liquid Crystal Institute and Department of Physics, Kent State University, 

Kent, Ohio 44242, U.S.A. 

We consider a cylindrical nematic liquid crystal waveguide with an infinite 
homogeneous isotropic cladding, and study the propagation of TM and TE modes. 
The dielectric tensor of the liquid crystal core which governs wave propagation is 
determined by the configuration of the nematic director. For TM modes, 
propagating optical fields alter the director configuration, and thus change the 
dielectric tensor. For both TM and TE modes, we consider the effects of the 
propagating fields on the order parameter tensor. We use an iterative numerical 
scheme to determine the propagation constant as a function of optical power. For 
the TM modes, the propagation constant increases continuously with the power. 
For the TE modes, an abrupt increase is found. 

1. Introduction 
Liquid crystals are orientationally ordered fluids which possess anisotropic bulk 

susceptibilities. Due to this anisotropy, liquid crystals experience body torques in the 
presence of applied fields which may give rise to collective rotation of the constituent 
molecules. Research on optical field induced reorientation in the nematic phase began 
around 1980 [l-61. It is now well known that optical fields can reorient liquid crystal 
molecules; in most materials, rod-like molecules prefer to align along the electric field. 
Since the dielectric tensor of non-polar nematics is a function of the square of the 
applied field, reorientational effects contribute, to lowest order, to the third order non- 
linear susceptibility f 3 ) .  In this paper, we discuss how field induced reorientation and 
changes in the order parameters affect wave propagation in a waveguide, and 
determine the intensity dependence of the propagation con’stant for TE and TM modes. 

We consider a nematic liquid crystal core confined to a cylinder with radius R, 
surrounded by an infinite homogeneous isotropic cladding with dielectric constant E,. 
The director is a unit vector in the direction of the local average orientation of the 
symmetry axes of the molecules. In our model [7], the nematic adopts the ‘escape’ 
configuration [S], where the director is parallel to the cylinder axis at the centre, and is 
perpendicular to it at the surface. The waveguide is shown in figure 1. 
- In $2, we study the propagation of the TM mode in the waveguide. The dielectric 

tensor is determined by the director configuration of the liquid crystal core, which can 
be obtained by minimizing the Frank free energy. In 5 3, we consider the propagation of 
the TE mode. Here the dielectric tensor is determined by the order parameter tensor of 
the liquid crystal core, which can be obtained by minimizing the Landau-de Gennes 
free energy. We consider the biaxial configuration where one eigenvector of the order 
parameter tensor is fixed in the azimuthal direction. 

2. Non-linear effect of TM modes 
The dielectric tensor of the liquid crystal core is determined by the director field B(r); 

snB = cI + A E H , ~ ~  where As =sl l  - E ~ ,  and ell and sl are the dielectric constants for fields 
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1978 H. Lin and P. Palffy-Muhoray 

Figure 1. Schematic of the cylindrical waveguide. 

parallel and perpendicular to the director. In the presence of optical fields, the Frank 
free energy density of the system is 

f z f e l a s t i c  + h e l d ,  (1) 

where the elastic free energy density in cylindrical coordinates (r, 4, z) is [7] 

where 0 is the angle between the nematic director and the symmetry axis of the cylinder 
and only depends on the radial coordinate r; K ,  and K ,  are the splay and bend elastic 
constants. The free energy density associated with the optical field isffield = -3D * E 
--iB * H. We assume that the fields have time and position dependence of the form 
exp[i(wt-jz)]. Taking the time average and noting that the electric and magnetic 
contributions are equal, this becomes 

where Ei (i = r ,  4, z) is the magnitude of the ith component of the electric field. 
For TM modes, the optical fields have three non-vanishing components [9]: H,, E ,  

and E,. By minimizing the free energy, we obtain the torque balance equation for the 
director 

a28 . 
r i z 8 y  aZ 

a220 
aZ z2q(QT+z2qsin28 ~ +zg(B)--sin28 

2 E 2 - E  2 +-z [(I ,I I )sin2O+(E,Ef+EfE,)cos28]=0, (4) 
2Kl 

where z= r /R ,  g(0) = 1 + 4q sin2 8, and q =a ( K 3 / K , -  1). Equation (4) can be rewritten 
in terms of the time-averaged total propagating power P = ZJ E,H$z dz as 

ae . (::s)' az 
a28 
aZ 2 ~ ~ g ( 8 ) ~ - t z ~ ( v -  l)sin28 - +2zg(O)--sin28 

Z2 
+ & c - [(IE,12-I.EZ12)sin28+(E,E,* +EfE,)cos28] =0, (5) (" 271 1 E,H$ z dz 

0 

where P 0 = c K / A c  is a material constant [lo], and c is the speed of light in vacuum. 
Po - 5 mW for 5CB. If E ,  and E, are known, we can solve the equation numerically for 
fl(r), and obtain the dielectric tensor in the presence of optical fields. The elements of the 
dielectric tensor in the absence of fields are shown in figure 2. 
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dielectric tensor. 
Figure 2. (a) The elements of E,,, E++, E,, of the dielectric tensor. (b)  The element of E,, of the 
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1980 H. Lin and P. Palffy-Muhoray 

The optical fields H,, E, and E ,  are solutions of Maxwell’s equations, and depend 
on the dielectric tensor. For TM modes, the equations are decoupled and the field 
equations inside the core region (r < R) become 

The boundary conditions at the coreecladding interface r = R are 

where H$ and are fields in the core and cladding, and at r=O, H,(O)=O. 
It is possible to transform equation (6) into real self-adjoint form. If 

H,=f(z)exp iPR -dz , ( J:: ) 
equation (6) becomes 

where primes denote differentiation with respect to z. It is interesting to note that the 
phase of H ,  is a function of distance from the axis. Boundary conditions are f(O)=O, 
and, at the core-cladding interface at z =  1 

(12) f’n =foul, 

wheref’” andf””‘ are the magnitude of fields in the core and cladding. 
This is a non-linear eigenvalue problem, where the propagation constant p plays 

the role of the eigenvalue. The field distributions and p can be obtained numerically by 
a simple adaptation of the shooting method [9 ] .  Once the field distributions are known, 
then equation ( 5 )  can be solved numerically for O(r). The scheme we used is as follows: 
we start with the director configuration which minimizes the free energy in the absence 
of fields, and use the corresponding dielectric tensor to obtain the field distributions for 
the propagating modes from Maxwell’s equations. Next we calculate the change in the 
dielectric tensor due to torques resulting from these optical fields, and solve for the field 
distribution again. Iterating this process until we obtain the steady state director 
configuration, we determine the field distributions and the propagation constant p. 
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Non-linear liquid crystal waveguides 1981 

Figure 3 shows the magnetic field distribution for different values of the power 
PIP,. The peak of the magnetic field tends to shift toward the centre of the waveguide as 
the power increases. Figures 4 and 5 show the distributions of the magnitude offields D, 
and E,. Since E ,  is discontinuous across the surface of the cylinder, D, is shown on the 
graph. The peak value of E, is about 5 times greater than that of E,. The director 
configurations for different values of the optical power PIP, are shown in figure 6. 

Figure 3. The magnitude of the magnetic field of the TM,, mode for different values of power 
PIP,. 

r / R  
Figure 4. The magnitude of the electric field D, of the TM,, mode. 
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0 

Figure 5. The magnitude of the electric field E ,  of the TM,, mode. 

0.0 0.2 0.4 0.6 0.8 1.0 

r /R  
Figure 6. The director configuration for different values of power PIP,. 
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Figure 7. The director configuration of the liquid crystal core (dashed line) and the wavefront of 
H ,  in the waveguide (solid line). 

Away from the axis, E, > E,, and the director tends to align in the radial direction as the 
power increases. The director configuration and the wavefront of H ,  in the waveguide 
are shown in figure 7. Due to the anisotropy of the liquid crystal core, the ray and wave 
normals are not parallel. Figure 8 shows the propagation constant as a function of 
power P/Po for the TM,, mode. 

3. Non-linear effect of the TE modes 
With the Landau-de Gennes formalism [I I], there can be two distinct configur- 

ational changes due to the optical field which satisfy the boundary conditions [ 121. One 
corresponds to a rotation of the director, i.e. the eigenvalues of Qap remain essentially 
the same while the orientation of the eigenframe varies with position. In the other the 
eigenvalues of QbS vary in space, while the eigenvectors are eventually fixed. We only 
consider in the latter a biaxial configuration. The reason for this is that the optical 
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1984 H. Lin and P. Palffy-Muhoray 

fields have three non-vanishing components E,, H ,  and H ,  for the TE modes. The 
electric field E4 may induce a rotation of the direction out of the t-t plane; this will 
introduce new non-zero off-diagonal elements in the dielectric tensor. In this case, the 
field equations cannot be decoupled, and our approach is no longer easily viable. 
Therefore we restrict ourselves to the biaxial configuration. 

The Landau-de Gennes free energy density is formed from scaiar invariants of Qua 
and its derivatives. In the presence of fields, the free energy up to sixth-order terms in 
the one elastic constant approximation, is 

F = ($4 tr Q Z - @  tr Q 3  +$C(tr Q2)2 +@ tr Q 2  tr Q3 +@(tr Q 2 ) 3  

(14) 

s 
+ M t r  Q 3 I 2  + iLQa6,  y Q a P ,  -3wQ,pEaEg)d3r, 

where A=a, (T-  TZ), T is the temperature, a,, T,*, B, C, D, E, F,  G, L, w are material 
constants; and w = 2 ( ~ ~ ~  -c1)/3S, where S is the orientational scalar order parameter in 
a uniaxial nematic phase. E ,, and E~ are assumed to be a linear function of S, and w is a 
constant. Also, tr Q z  = QaaQaa, tr Q 3  = Q,,Q,,Q,, and Qua, ,, = aQ,,Jax,; E,  is the 
component of the electric field. For simplicity we have used the one elastic constant 
approximation. 

We use cylindrical coordinates (r ,  4, z )  in a lab-fixed frame, and assume that one 
eigenvector of the order parameter tensor QaP is always parallel to the 4 axis, and that 
Qas is a function only of r .  Qas can then be expressed as 

’ (15) 1 Q = [  0 - i (S+  P )  0 
$(S + P )  -a (3s - P) cos 20 

$(3S- P )  sin 28 

0 

0 

a(3S - P )  sin 28 

4 ( S  + P)  + $ (3s - P) cos 28 

where S and P are the scalar orientational order parameters: S = (gu - i)’ - 1) and 
P = ($[(u - j)2 -(u - k)’]) where u is a unit vector along the symmetry axis of a molecule, 
i, j and k are the eigenvectors of Qua and ( ) denotes the ensemble average. In this 
representation, i and k are parallel to the r and z axes, respectively, at r =O. For r # 0, the 
eigenframe rotates through an angle e(r)  about the j axis. Thus 8(0) = 0, and 0(R) = 4 2 .  j 
is assumed to remain parallel to the 4 axis throughout. 

For TE modes, in this representation, the free energy can be written in cylindrical 
coordinates 

~ a ( 3 S 2 + ~ 2 ) - a $ b ~ ( S 2 - ~ 2 ) + ~ ( 3 ~ 2 + ~ 2 ) 2 + ~ ~ ~ ( ~ 2 - ~ 2 ) ( 3 ~ 2  + p 2 )  

1 1  
8 2  

+&e(3S2+P2)3+=&gS2(S2-P2)2  +--z(9S2+5P2+6SP) 

3 1  
8 zz 

--- 

C 
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where the dimensionless free energy 9 = P/(2A’HC), A’ is the cross-sectional area of the 
cylinder, H is the length of the cylinder; and a = A/C,  b = B/C, d = D/C, e = E/C,  g = GjC, 
1 = L/(R’C), and 

and c is the speed of light. 
Configuration which minimize the free energy 9 correspond to solutions of the 

Euler-Lagrange equations Sf/SS = 6f/SP = 6 f /S6  = 0, where f is the integrand in 
equation (16). These give rise to three coupled non-linear differential equations. We use 
a relaxation method [I21 to solve these equations numerically. In cylindrical 
coordinates, the Landau-Khalatnikov equations are 

where x represents S,  P or 6, y i  (i= 1,2,3) is a viscosity coefficient and t is time. 
Explicitly, these are 

y l - = -  as {i -a S-$b(3S2-PP2)+3S(3S2 + P 2 ) + & d [ ( 3 S 2 - P 2 ) ( 3 S 2 + P 2 )  
at 

+ 6Sz(S2 - P’)] +ieS(3Sz + P’)’ +&gS(S2 - P2)(3S2 - P)  

(3’ 3 1  
2 z’ + - - ( 3 s  + P )  sin’ 0 + 31(3~ - P )  - 

P + 3 b S P + ~ P ( 3 S 2 + P 2 ) - & d S P ( S Z + P Z )  

+$eP(3S2 + P 2 ) 2 - ~ g ~ 2 ~ ( ~ 2 - P 2 )  

1 1  3 1  
42 42 

+--5(5P+ 3S)- -7  ( S - P )  cos 2 8 - 9 ( 3 s - P )  

ae 3 i 
at 4z2  y 3  - = -- - (3s - P)(S + P )  sin 28 +31(3s - P)’ 

At the boundaries, 6 is fixed, and we assume S can vary freely. P = 0 at r = 0 due to the 
cylindrical symmetry, and P can vary freely at r = R. This gives 

e=o, 1 
-=O, az i 

P=O, J 
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Figure 10. The order parameter P as a function of position for different values of power PIP,. 
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Figure 12. The propagation constant as a function of power PIP,  for TE,, mode. 
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at z = 0, and 
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as 
az 
-=O, 

at z= 1. 
If E ,  is known, the above equations can be solved using a standard relaxation 

method. For TE modes, the component of the electric field E ,  is the solution of the wave 
equation 

m 2 p , ~ , ~ , , - ~ 2 - - p ) E , = 0 .  1 

In the biaxial configuration, the dielectric tensor has the form E , ~  = EdmD + wQaD, where 
E = ( E , ,  +2~,/3), and therefore E,,=E-$w(S+P). 

These equations are discretized and solved iteratively. We start with a set of initial 
values S ,  P and 8, and solve equation (23) for the field E,  using the shooting method [9 ] .  
We then use finite differences to solve equations (18) to (20) for S,  P and 8. Then we use 
the new values to solve equation (23) for E ,  again. This process is repeated until 
convergence. 

Results on the distributions of S,  P and 8 for different optical powers inside the 
waveguide are shown in figures 9, 10 and 11. If the power is low, the biaxiality is very 
small, and the director configuration is close to the one described by the Frank free 
energy. As the power is increased, at a critical value (P,/P,-8 x lo5), the average 
biaxiality suddenly increases. The order parameters S and P remain positive near the 
axis and the surface, but are negative elsewhere. This indicates that the molecules are 
effectively aligned with the field E ,  everywhere except at the boundaries. Figure 12 
shows the propagation constant a as a function of power PIP, for the TE,, mode. This 
suggests that a first order transition occurs at the critical power. 

4. Conclusion 
We have studied the dependence of the propagation constant p on optical power in 

a cylindrical liquid crystal waveguide for both TE and TM modes. By exerting 
torques, the propagating fields change the configuration and the dielectric tensor of the 
liquid crystal core. For the TM and TE modes, by using an iterative numerical scheme, 
we have determined the steady state configuration, field distributions and propagation 
constant a. Because of the non-local response, /l is a function of optical power rather 
than intensity. In the case of the TM mode, the propagation constant increases 
continuously with the optical power. In the case of the TE mode, a first order transition 
occurs at some critical power. We have considered only the transition to the biaxial 
configuration here; it is possible that another configuration is realized at lower power 
levels. 

This research was supported in part by the National Science Foundation Science 
and Technology Center ALCOM DMR89-20147, and by the Defense Advanced 
Research Projects Agency through US Army contract DAAB07-88-C-F421 from the 
Center for Night Vision and Electro-optics. 
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